Do Lab Values hold the Key to Aspiration Pneumonia?

Anastasia Johnson, CScD, CCC-SLP, CLC

DISCLOSURES

♦FINANCIAL

- ♦I receive a salary from Shepherd Center as a full-time employee
- ♦ No financial compensation for this presentation

♦ NON-FINANCIAL

♦ I have no relevant non-financial disclosures

Scenario

- ♦ You receive a new evaluation of a patient arriving NPO with no history from the outside acute hospital
- ♦ Patient is alone, a poor historian
- ♦ Bedside swallow shows s/s aspiration
- ♦ Ask resident for instrumental order
- ♦ Resident responds, "well I can look at his labs and tell he's aspirating, so just go ahead and treat him without the instrumental."

Scenario cont'd

- Morning huddle, charge RN states bloodwork came back and the patient has elevated WBCs, CRP level, abnormal ABG
 - Medical team states these values are guiding antibiotic therapy as they continue to determine the
 type of infection present
- ♦ Attending asks if you think the patient is aspirating, and provides an order for instrumental
 - ♦ Thinking about the resident's comment, report in huddle
 - ♦ Come back and discuss with your immediate team: PT, OT, RD/LD
 - ♦ WHY DIDN'T WE LEARN ABOUT THIS IN SPEECH SCHOOL?!

DISCLAIMER

- Not in our scope to diagnose from lab values
 - "Review medical records to determine relevant health, medical, and pharmacological information;"
- Uphold our Code of Ethics
 - ♦ Principal of Ethics I, Rule B: Individuals shall use every resource, including referral and/or interprofessional collaboration when appropriate, to ensure that quality service is provided.

Why?

- Understand the body's response to what we see during instrumental evaluation
 - ♦ Aspiration pneumonia most common hospital acquired pneumonia (HAP)
 - ♦ 1/3 post-stroke aspirators develop aspiration pneumonia
 - ♦ Hammond, 2008
- Continuing to advocate for our role in the medical aspect of our profession
 - ♦ Improve communication across professionals
- Advocating and helping our patients across the lifespan
 - Allows us to ask the right questions

♦ Mills & Ashford, 2008

DEFINITIONS

- Pneumonitis inflammation of lung tissue
 - ♦ Acute Inhalation Injuries
 - ♦ Mold
 - ♦ Chemicals
 - ♦ Ammonia
 - ♦ Formaldehyde
 - ♦ Pulmonary eosiniphilia
 - ♦ Pneumonia

- ♦ Pneumonia inflames the lungs causing fluid buildup in the alveoli
 - ♦ Community Acquired Pneumonia (CAP)
 - ♦ Bacterial
 - ♦ HAP
 - ♦ Aspiration Pneumonia

DEFINITIONS

Table 1

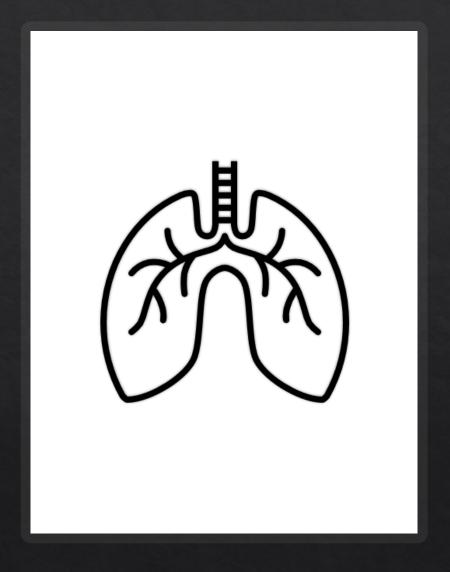
Aspiration: Inhalation of oropharyngeal or gastric secretions into the larynx and lower respiratory tract.

Aspiration pneumonitis: Lower respiratory tract symptoms and signs plus a history of definite or suspected aspiration event plus a radiographic infiltrate.

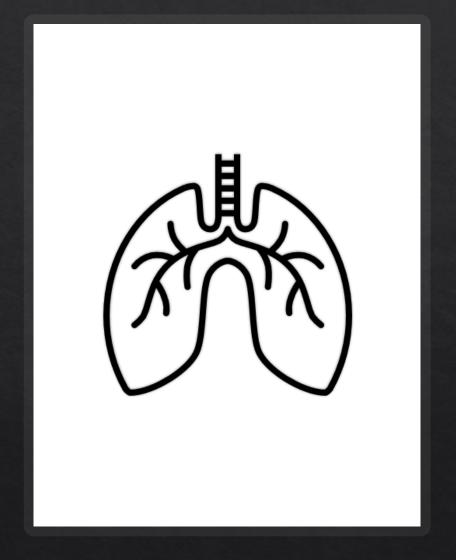
Aspiration pneumonia: Lower respiratory tract symptoms and signs in a patient with risk factors for aspiration as well as the presence of a radiographic infiltrate in a dependent bronchopulmonary segment.

Aspiration Pneumonia - Pathophysiology

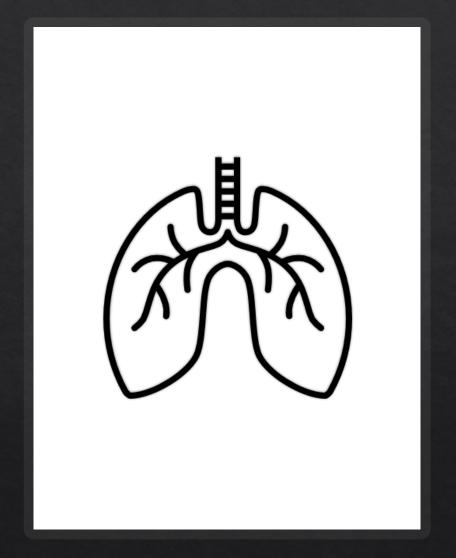
- 1. What does it do the lungs?
- 2. How do the lungs respond?
- 3. How does the body let us know something is wrong?

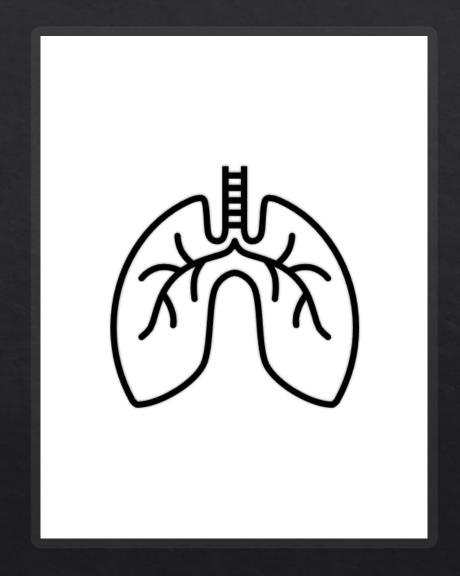


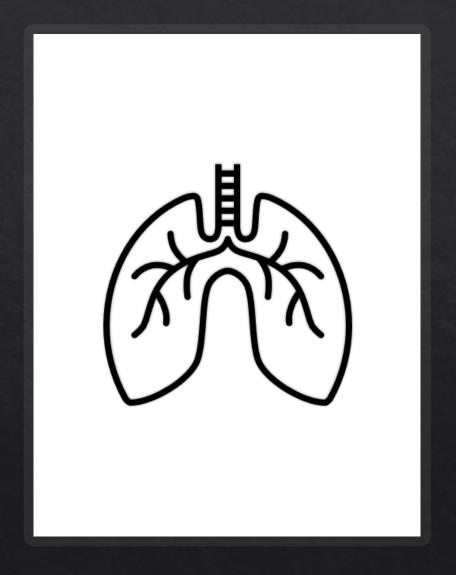
Aspiration Pneumonia - Pathophysiology


- What does it do to the lungs?
 - Pathogens colonize lower respiratory tract
 - Characteristics of pathogens effect outcome
 - ♦ pH, liquid, solid, bacterial content
- ♦ How do they respond?
 - ♦ Inflammation
 - ♦ Can also harm good tissue
 - ♦ Results in an inefficient gas exchange

- ♦ How does the body tell us?
 - ♦ S/s vary across lifespan
 - ♦ Fever
 - ♦ Malaise
 - ♦ Tachypnea
 - Cough (less common in neonates)
 - Sneeze (more common in neonates)
 - ♦ Blood work!


- C-Reactive Protein (CRP)
 - Immune system component
 - Monitors inflammation
 - Used with other values
 - ♦ Can indicate infection, risk of heart disease, cancer


- Comprehensive Metabolic Panel (CMP)
 - ♦ 14 tests metabolism, hydration, kidneys and liver
 - ♦ Electrolytes & hydration status
 - ♦ Electrolytes minerals, dissolved salts
 - Sodium
 - Potassium
 - Chloride
 - Bicarbonate (Total CO2)


- Arterial Blood Gases (ABG)
 - Evaluates gas exchange and acid-base (pH)
 - ⋄ pH, PaCO2, HCO3-, O2
 - © Combinations: e.g. pH, PaCO2
 - Can mean: Respiratory acidosis
 - ♦ But also: diabetes, renal failure

- Complete Blood Count (CBC)
 - Red blood count (RBC)
 - Platelet
 - ♦ Hematocrit (HCT)
 - ♦ Hemoglobin (Hgb)
 - White blood cell count (WBC)
 - ♦ Leukocytes

- Leukocytes
 - Lymphocytes create antibodies
 - ♦ Neutrophils "bacteria fighters"
 - Expressed as the: Absolute Neutrophil Count (ANC)
 - Neutropenia − low count
 - Neutrophilia − high count
 - ♦ Basophiles secrete histamine
 - Eosinophils can help with allergic responses
 - Monocytes break down bacteria

Do lab values hold the key?

- ♦ Answer should be "I don't know"
 - WHY? We need more information than just labs
 - ♦ Lab values have multiple meanings
 - Added puzzle pieces to help you practice and understand illness
 - ♦ Collaborate with RD/LD

REFERENCES

- ♦ American Speech-Language-Hearing Association. (2016). Code of ethics [Ethics]. Available from www.asha.org/policy/.
- ♦ American Speech-Language-Hearing Association. (2016). Scope of practice in speech-language pathology [Scope of Practice]. Available from www.asha.org/policy/.
- * Ashford, J. (2005) Pneumonia: Factors Beyond Aspiration. *Swallowing and swallowing disorders*, *14(1)*, 10-16. https://doi.org/10.1044/sasd14.1.10
- Cavallazzi, R., Vasu, T., & Marik, P. (2009) Aspiration Pneumonitis and Aspiration Pneumonia. *Perspectives on swallowing and swallowing disorders, 18(1), 25-33.*https://doi.org/10.1044/sasd18.1.25

REFERENCES

- ♦ DiBardino, D., Wunderink, R. (2014). Aspiration pneumonia: A review of modern trends. Journal of Critical Care, 30, 40-48. http://dx.doi.org/10.1016/j.jcrc.2014.07.011.
- Mills, R., Ashford, J. (2008). A Methodology for the Inclusion of Laboratory Assessment in the Evaluation of Dysphagia. *Perspectives on Swallowing and Swallowing Disorders*, 17(4), 128-134. https://doi.org/10.1044/sasd17.4.128
- * Rennis DK., Krishnakumar, EV. (2016). Role of initial arterial blood gas variations in predicting the outcome of pneumonia patients with type I/II respiratory failure. *International Journal of Advanced Medicine*, 3(2),313-318. https://dx.doi.org/10.18203/2349-3933.ijam20161082
- ♦ Ridker, P. (2003, September). C-Reactive Protein: A Simple Test to Help Predict Risk of Heart Attack and Stroke. *Circulation*, 108(12), 81-85

REFERENCES

- ♦ Sheffler, K. (2015, October). *Basic Lab Assessments for the Speech-Language Pathologist*, Swallow Study. http://www.swallowstudy.com/?p=1105
- ♦ Simon, M., Collins, SM. (2013). The Pediatric Lung and Aspiration. *Perspectives on Swallowing and Swallowing Disorders*, 22(4), 142-154. https://doi.org/10.1044/sasd22.4.142